skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "AlAmer, Mohammed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This perspective summarizes the role of binders in zeolitic catalytic systems and provides insights into how binders affect acid density, porosity, and the control of the proximity between metal and acid sites within shaped zeolite catalysts. 
    more » « less
  2. Abstract Smart materials are versatile material systems which exhibit a measurable response to external stimuli. Recently, smart material systems have been developed which incorporate graphene in order to share on its various advantageous properties, such as mechanical strength, electrical conductivity, and thermal conductivity as well as to achieve unique stimuli‐dependent responses. Here, a graphene fiber‐based smart material that exhibits reversible electrical conductivity switching at a relatively low temperature (60 °C), is reported. Using molecular dynamics (MD) simulation and density functional theory‐based non‐equilibrium Green's function (DFT‐NEGF) approach, it is revealed that this thermo‐response behavior is due to the change in configuration of amphiphilic triblock dispersant molecules occurring in the graphene fiber during heating or cooling. These conformational changes alter the total number of graphene‐graphene contacts within the composite material system, and thus the electrical conductivity as well. Additionally, this graphene fiber fabrication approach uses a scalable, facile, water‐based method, that makes it easy to modify material composition ratios. In all, this work represents an important step forward to enable complete functional tuning of graphene‐based smart materials at the nanoscale while increasing commercialization viability. 
    more » « less